PandasQueryCompiler#
PandasQueryCompiler
is responsible for compiling
a set of known predefined functions and pairing those with dataframe algebra operators in the
PandasDataframe, specifically for dataframes backed by
pandas.DataFrame
objects.
Each PandasQueryCompiler
contains an instance of
PandasDataframe
which it queries to get the result.
PandasQueryCompiler
supports methods built by
the algebra module.
If you want to add an implementation for a query compiler method, visit the algebra module documentation
to see whether the new operation fits one of the existing function templates and can be easily implemented
with them.
Public API#
PandasQueryCompiler
implements common query compilers API
defined by the BaseQueryCompiler
. Some functionalities
are inherited from the base class, in the following section only overridden methods are presented.
- class modin.core.storage_formats.pandas.query_compiler.PandasQueryCompiler(modin_frame, shape_hint=None)#
Query compiler for the pandas storage format.
This class translates common query compiler API into the DataFrame Algebra queries, that is supposed to be executed by
PandasDataframe
.- Parameters
modin_frame (PandasDataframe) – Modin Frame to query with the compiled queries.
shape_hint ({"row", "column", None}, default: None) – Shape hint for frames known to be a column or a row, otherwise None.
- abs(*args, **kwargs)#
Execute Map function against passed query compiler.
- add(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- add_prefix(prefix, axis=1)#
Add string prefix to the index labels along specified axis.
- Parameters
prefix (str) – The string to add before each label.
axis ({0, 1}, default: 1) – Axis to add prefix along. 0 is for index and 1 is for columns.
- Returns
New query compiler with updated labels.
- Return type
- add_suffix(suffix, axis=1)#
Add string suffix to the index labels along specified axis.
- Parameters
suffix (str) – The string to add after each label.
axis ({0, 1}, default: 1) – Axis to add suffix along. 0 is for index and 1 is for columns.
- Returns
New query compiler with updated labels.
- Return type
- all(*args, **kwargs)#
Execute TreeReduce function against passed query compiler.
- any(*args, **kwargs)#
Execute TreeReduce function against passed query compiler.
- apply(func, axis, *args, **kwargs)#
Apply passed function across given axis.
- Parameters
func (callable(pandas.Series) -> scalar, str, list or dict of such) – The function to apply to each column or row.
axis ({0, 1}) – Target axis to apply the function along. 0 is for index, 1 is for columns.
raw (bool, default: False) – Whether to pass a high-level Series object (False) or a raw representation of the data (True).
result_type ({"expand", "reduce", "broadcast", None}, default: None) –
Determines how to treat list-like return type of the func (works only if a single function was passed):
”expand”: expand list-like result into columns.
”reduce”: keep result into a single cell (opposite of “expand”).
”broadcast”: broadcast result to original data shape (overwrite the existing column/row with the function result).
None: use “expand” strategy if Series is returned, “reduce” otherwise.
*args (iterable) – Positional arguments to pass to func.
**kwargs (dict) – Keyword arguments to pass to func.
- Returns
QueryCompiler that contains the results of execution and is built by the following rules:
Index of the specified axis contains: the names of the passed functions if multiple functions are passed, otherwise: indices of the func result if “expand” strategy is used, indices of the original frame if “broadcast” strategy is used, a single label MODIN_UNNAMED_SERIES_LABEL if “reduce” strategy is used.
Labels of the opposite axis are preserved.
Each element is the result of execution of func against corresponding row/column.
- Return type
- apply_on_series(func, *args, **kwargs)#
Apply passed function on underlying Series.
- Parameters
func (callable(pandas.Series) -> scalar, str, list or dict of such) – The function to apply to each row.
*args (iterable) – Positional arguments to pass to func.
**kwargs (dict) – Keyword arguments to pass to func.
- Return type
- applymap(*args, **kwargs)#
Execute Map function against passed query compiler.
- astype(col_dtypes, errors: str = 'raise')#
Convert columns dtypes to given dtypes.
- Parameters
col_dtypes (dict) – Map for column names and new dtypes.
errors ({'raise', 'ignore'}, default: 'raise') – Control raising of exceptions on invalid data for provided dtype. - raise : allow exceptions to be raised - ignore : suppress exceptions. On error return original object.
- Returns
New QueryCompiler with updated dtypes.
- Return type
- cat_codes()#
Convert underlying categories data into its codes.
- Returns
New QueryCompiler containing the integer codes of the underlying categories.
- Return type
Notes
Please refer to
modin.pandas.Series.cat.codes
for more information about parameters and output format.Warning
This method is supported only by one-column query compilers.
- clip(lower, upper, **kwargs)#
Trim values at input threshold.
- Parameters
lower (float or list-like) –
upper (float or list-like) –
axis ({0, 1}) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
QueryCompiler with values limited by the specified thresholds.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.clip
for more information about parameters and output format.
- combine(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- combine_first(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- compare(other, **kwargs)#
Compare data of two QueryCompilers and highlight the difference.
- Parameters
other (BaseQueryCompiler) – Query compiler to compare with. Have to be the same shape and the same labeling as self.
align_axis ({0, 1}) –
keep_shape (bool) –
keep_equal (bool) –
result_names (tuple) –
- Returns
New QueryCompiler containing the differences between self and passed query compiler.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.compare
for more information about parameters and output format.
- concat(axis, other, **kwargs)#
Concatenate self with passed query compilers along specified axis.
- Parameters
axis ({0, 1}) – Axis to concatenate along. 0 is for index and 1 is for columns.
other (BaseQueryCompiler or list of such) – Objects to concatenate with self.
join ({'outer', 'inner', 'right', 'left'}, default: 'outer') – Type of join that will be used if indices on the other axis are different. (note: if specified, has to be passed as
join=value
).ignore_index (bool, default: False) – If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, …, n - 1. (note: if specified, has to be passed as
ignore_index=value
).sort (bool, default: False) – Whether or not to sort non-concatenation axis. (note: if specified, has to be passed as
sort=value
).**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
Concatenated objects.
- Return type
- conj(*args, **kwargs)#
Execute Map function against passed query compiler.
- convert_dtypes(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- copy()#
Make a copy of this object.
- Returns
Copy of self.
- Return type
Notes
For copy, we don’t want a situation where we modify the metadata of the copies if we end up modifying something here. We copy all of the metadata to prevent that.
- corr(method='pearson', min_periods=1)#
Compute pairwise correlation of columns, excluding NA/null values.
- Parameters
method ({'pearson', 'kendall', 'spearman'} or callable(pandas.Series, pandas.Series) -> pandas.Series) – Correlation method.
min_periods (int) – Minimum number of observations required per pair of columns to have a valid result. If fewer than min_periods non-NA values are present the result will be NA.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
Correlation matrix.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.corr
for more information about parameters and output format.
- count(*args, **kwargs)#
Execute TreeReduce function against passed query compiler.
- cov(min_periods=None, ddof=1)#
Compute pairwise covariance of columns, excluding NA/null values.
- Parameters
min_periods (int) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
Covariance matrix.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.cov
for more information about parameters and output format.
- cummax(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- cummin(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- cumprod(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- cumsum(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- describe(percentiles: ndarray, datetime_is_numeric: bool)#
Generate descriptive statistics.
- Parameters
percentiles (list-like) –
datetime_is_numeric (bool) –
- Returns
QueryCompiler object containing the descriptive statistics of the underlying data.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.describe
for more information about parameters and output format.
- df_update(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- diff(axis, periods)#
First discrete difference of element.
- Parameters
periods (int) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
QueryCompiler of the same shape as self, where each element is the difference between the corresponding value and the previous value in this row or column.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.diff
for more information about parameters and output format.
- dot(other, squeeze_self=None, squeeze_other=None)#
Compute the matrix multiplication of self and other.
- Parameters
other (BaseQueryCompiler or NumPy array) – The other query compiler or NumPy array to matrix multiply with self.
squeeze_self (boolean) – If self is a one-column query compiler, indicates whether it represents Series object.
squeeze_other (boolean) – If other is a one-column query compiler, indicates whether it represents Series object.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
A new query compiler that contains result of the matrix multiply.
- Return type
- drop(index=None, columns=None, errors: str = 'raise')#
Drop specified rows or columns.
- Parameters
index (list of labels, optional) – Labels of rows to drop.
columns (list of labels, optional) – Labels of columns to drop.
errors (str, default: "raise") – If ‘ignore’, suppress error and only existing labels are dropped.
- Returns
New QueryCompiler with removed data.
- Return type
- dropna(**kwargs)#
Remove missing values.
- Parameters
axis ({0, 1}) –
how ({"any", "all"}) –
thresh (int, optional) –
subset (list of labels) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler with null values dropped along given axis.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.dropna
for more information about parameters and output format.
- dt_asfreq(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_ceil(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_date(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_day(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_day_name(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_dayofweek(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_dayofyear(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_days(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_days_in_month(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_daysinmonth(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_end_time(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_floor(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_hour(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_is_leap_year(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_is_month_end(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_is_month_start(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_is_quarter_end(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_is_quarter_start(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_is_year_end(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_is_year_start(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_microsecond(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_microseconds(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_minute(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_month(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_month_name(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_nanosecond(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_nanoseconds(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_normalize(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_quarter(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_qyear(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_round(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_second(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_seconds(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_start_time(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_strftime(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_time(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_timetz(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_to_period(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_to_pydatetime(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_to_pytimedelta(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_to_timestamp(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_total_seconds(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_tz_convert(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_tz_localize(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_week(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_weekday(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_weekofyear(*args, **kwargs)#
Execute Map function against passed query compiler.
- dt_year(*args, **kwargs)#
Execute Map function against passed query compiler.
- property dtypes#
Get columns dtypes.
- Returns
Series with dtypes of each column.
- Return type
pandas.Series
- duplicated(**kwargs)#
Return boolean Series denoting duplicate rows.
- Parameters
**kwargs (dict) – Additional keyword arguments to be passed in to pandas.DataFrame.duplicated.
- Returns
New QueryCompiler containing boolean Series denoting duplicate rows.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.duplicated
for more information about parameters and output format.
- eq(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- eval(expr, **kwargs)#
Evaluate string expression on QueryCompiler columns.
- Parameters
expr (str) –
**kwargs (dict) –
- Returns
QueryCompiler containing the result of evaluation.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.eval
for more information about parameters and output format.
- expanding_aggregate(axis, expanding_args, func, *args, **kwargs)#
Create expanding window and apply specified functions for each window over the given axis.
- Parameters
fold_axis ({0, 1}) –
expanding_args (list) – Rolling windows arguments with the same signature as
modin.pandas.DataFrame.rolling
.func (str, dict, callable(pandas.Series) -> scalar, or list of such) –
*args (iterable) –
**kwargs (dict) –
- Returns
New QueryCompiler containing the result of passed functions for each window, built by the following rules:
Labels on the specified axis are preserved.
Labels on the opposite of specified axis are MultiIndex, where first level contains preserved labels of this axis and the second level has the function names.
Each element of QueryCompiler is the result of corresponding function for the corresponding window and column/row.
- Return type
Notes
Please refer to
modin.pandas.Expanding.aggregate
for more information about parameters and output format.
- expanding_corr(fold_axis, expanding_args, squeeze_self, squeeze_other, other=None, pairwise=None, ddof=1, numeric_only=False, **kwargs)#
Create expanding window and compute correlation for each window over the given axis.
- Parameters
fold_axis ({0, 1}) –
expanding_args (list) – Rolling windows arguments with the same signature as
modin.pandas.DataFrame.rolling
.squeeze_self (bool) –
squeeze_other (bool) –
other (pandas.Series or pandas.DataFrame, default: None) –
pairwise (bool | None, default: None) –
ddof (int, default: 1) –
numeric_only (bool, default: False) –
**kwargs (dict) –
- Returns
New QueryCompiler containing correlation for each window, built by the following rules:
Output QueryCompiler has the same shape and axes labels as the source.
Each element is the correlation for the corresponding window.
- Return type
Notes
Please refer to
modin.pandas.Expanding.corr
for more information about parameters and output format.
- expanding_count(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- expanding_cov(fold_axis, expanding_args, squeeze_self, squeeze_other, other=None, pairwise=None, ddof=1, numeric_only=False, **kwargs)#
Create expanding window and compute sample covariance for each window over the given axis.
- Parameters
fold_axis ({0, 1}) –
expanding_args (list) – Rolling windows arguments with the same signature as
modin.pandas.DataFrame.rolling
.squeeze_self (bool) –
squeeze_other (bool) –
other (pandas.Series or pandas.DataFrame, default: None) –
pairwise (bool | None, default: None) –
ddof (int, default: 1) –
numeric_only (bool, default: False) –
**kwargs (dict) –
- Returns
New QueryCompiler containing sample covariance for each window, built by the following rules:
Output QueryCompiler has the same shape and axes labels as the source.
Each element is the sample covariance for the corresponding window.
- Return type
Notes
Please refer to
modin.pandas.Expanding.cov
for more information about parameters and output format.
- expanding_kurt(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- expanding_max(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- expanding_mean(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- expanding_median(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- expanding_min(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- expanding_quantile(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- expanding_rank(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- expanding_sem(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- expanding_skew(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- expanding_std(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- expanding_sum(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- expanding_var(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- explode(column)#
Explode the given columns.
- Parameters
column (Union[Hashable, Sequence[Hashable]]) – The columns to explode.
- Returns
QueryCompiler that contains the results of execution. For each row in the input QueryCompiler, if the selected columns each contain M items, there will be M rows created by exploding the columns.
- Return type
- fillna(**kwargs)#
Replace NaN values using provided method.
- Parameters
value (scalar or dict) –
method ({"backfill", "bfill", "pad", "ffill", None}) –
axis ({0, 1}) –
inplace ({False}) – This parameter serves the compatibility purpose. Always has to be False.
limit (int, optional) –
downcast (dict, optional) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler with all null values filled.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.fillna
for more information about parameters and output format.
- finalize()#
Finalize constructing the dataframe calling all deferred functions which were used to build it.
- first_valid_index()#
Return index label of first non-NaN/NULL value.
- Return type
scalar
- floordiv(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- free()#
Trigger a cleanup of this object.
- classmethod from_arrow(at, data_cls)#
Build QueryCompiler from Arrow Table.
- Parameters
at (Arrow Table) – The Arrow Table to convert from.
data_cls (type) –
PandasDataframe
class (or its descendant) to convert to.
- Returns
QueryCompiler containing data from the pandas DataFrame.
- Return type
- classmethod from_dataframe(df, data_cls)#
Build QueryCompiler from a DataFrame object supporting the dataframe exchange protocol __dataframe__().
- Parameters
df (DataFrame) – The DataFrame object supporting the dataframe exchange protocol.
data_cls (type) –
PandasDataframe
class (or its descendant) to convert to.
- Returns
QueryCompiler containing data from the DataFrame.
- Return type
- classmethod from_pandas(df, data_cls)#
Build QueryCompiler from pandas DataFrame.
- Parameters
df (pandas.DataFrame) – The pandas DataFrame to convert from.
data_cls (type) –
PandasDataframe
class (or its descendant) to convert to.
- Returns
QueryCompiler containing data from the pandas DataFrame.
- Return type
- ge(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- get_dummies(columns, **kwargs)#
Convert categorical variables to dummy variables for certain columns.
- Parameters
columns (label or list of such) – Columns to convert.
prefix (str or list of such) –
prefix_sep (str) –
dummy_na (bool) –
drop_first (bool) –
dtype (dtype) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler with categorical variables converted to dummy.
- Return type
Notes
Please refer to
modin.pandas.get_dummies
for more information about parameters and output format.
- getitem_array(key)#
Mask QueryCompiler with key.
- Parameters
key (BaseQueryCompiler, np.ndarray or list of column labels) – Boolean mask represented by QueryCompiler or
np.ndarray
of the same shape as self, or enumerable of columns to pick.- Returns
New masked QueryCompiler.
- Return type
- getitem_column_array(key, numeric=False)#
Get column data for target labels.
- Parameters
key (list-like) – Target labels by which to retrieve data.
numeric (bool, default: False) – Whether or not the key passed in represents the numeric index or the named index.
- Returns
New QueryCompiler that contains specified columns.
- Return type
- getitem_row_array(key)#
Get row data for target indices.
- Parameters
key (list-like) – Numeric indices of the rows to pick.
- Returns
New QueryCompiler that contains specified rows.
- Return type
- groupby_agg(by, agg_func, axis, groupby_kwargs, agg_args, agg_kwargs, how='axis_wise', drop=False, series_groupby=False)#
Group QueryCompiler data and apply passed aggregation function.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
agg_func (str, dict or callable(Series | DataFrame) -> scalar | Series | DataFrame) – Function to apply to the GroupBy object.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
how ({'axis_wise', 'group_wise', 'transform'}, default: 'axis_wise') –
- How to apply passed agg_func:
’axis_wise’: apply the function against each row/column.
’group_wise’: apply the function against every group.
’transform’: apply the function against every group and broadcast the result to the original Query Compiler shape.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
series_groupby (bool, default: False) – Whether we should treat self as Series when performing groupby.
- Returns
QueryCompiler containing the result of groupby aggregation.
- Return type
Notes
Please refer to
modin.pandas.GroupBy.aggregate
for more information about parameters and output format.
- groupby_all(*args, **kwargs)#
Group QueryCompiler data and check whether all elements are True for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the boolean of whether all elements are True for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.all
for more information about parameters and output format.
- groupby_any(*args, **kwargs)#
Group QueryCompiler data and check whether any element is True for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the boolean of whether there is any element which is True for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.any
for more information about parameters and output format.
- groupby_corr(by, axis, groupby_kwargs, agg_args, agg_kwargs, drop=False)#
Group QueryCompiler data and compute correlation for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the correlation for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.corr
for more information about parameters and output format.
- groupby_count(*args, **kwargs)#
Group QueryCompiler data and count non-null values for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the number of non-null values for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.count
for more information about parameters and output format.
- groupby_cov(by, axis, groupby_kwargs, agg_args, agg_kwargs, drop=False)#
Group QueryCompiler data and compute covariance for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the covariance for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.cov
for more information about parameters and output format.
- groupby_dtypes(by, axis, groupby_kwargs, agg_args, agg_kwargs, drop=False)#
Group QueryCompiler data and get data types for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the data type for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.dtypes
for more information about parameters and output format.
- groupby_max(*args, **kwargs)#
Group QueryCompiler data and get the maximum value for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the maximum value for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.max
for more information about parameters and output format.
- groupby_mean(by, axis, groupby_kwargs, agg_args, agg_kwargs, drop=False)#
Group QueryCompiler data and compute the mean value for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the mean value for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.mean
for more information about parameters and output format.
- groupby_min(*args, **kwargs)#
Group QueryCompiler data and get the minimum value for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the minimum value for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.min
for more information about parameters and output format.
- groupby_nth(by, axis, groupby_kwargs, agg_args, agg_kwargs, drop=False)#
Group QueryCompiler data and get nth value in group for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the nth value for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.nth
for more information about parameters and output format.
- groupby_prod(*args, **kwargs)#
Group QueryCompiler data and compute product for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the product for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.prod
for more information about parameters and output format.
- groupby_size(by, axis, groupby_kwargs, agg_args, agg_kwargs, drop=False)#
Group QueryCompiler data and get the number of elements for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the number of elements for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.size
for more information about parameters and output format.
- groupby_skew(*args, **kwargs)#
Group QueryCompiler data and compute unbiased skew for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the unbiased skew for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.skew
for more information about parameters and output format.
- groupby_sum(*args, **kwargs)#
Group QueryCompiler data and compute sum for every group.
- Parameters
by (BaseQueryCompiler, column or index label, Grouper or list of such) – Object that determine groups.
axis ({0, 1}) – Axis to group and apply aggregation function along. 0 is for index, when 1 is for columns.
groupby_kwargs (dict) – GroupBy parameters as expected by
modin.pandas.DataFrame.groupby
signature.agg_args (list-like) – Positional arguments to pass to the agg_func.
agg_kwargs (dict) – Key arguments to pass to the agg_func.
drop (bool, default: False) – If by is a QueryCompiler indicates whether or not by-data came from the self.
- Returns
BaseQueryCompiler – QueryCompiler containing the result of groupby reduce built by the following rules:
Labels on the opposite of specified axis are preserved.
If groupby_args[“as_index”] is True then labels on the specified axis are the group names, otherwise labels would be default: 0, 1 … n.
If groupby_args[“as_index”] is False, then first N columns/rows of the frame contain group names, where N is the columns/rows to group on.
Each element of QueryCompiler is the sum for the corresponding group and column/row.
.. warning – map_args and reduce_args parameters are deprecated. They’re leaked here from
PandasQueryCompiler.groupby_*
, pandas storage format implements groupby via TreeReduce approach, but for other storage formats these parameters make no sense, and so they’ll be removed in the future.
Notes
Please refer to
modin.pandas.GroupBy.sum
for more information about parameters and output format.
- gt(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- idxmax(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- idxmin(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- infer_objects()#
Attempt to infer better dtypes for object columns.
Attempts soft conversion of object-dtyped columns, leaving non-object and unconvertible columns unchanged. The inference rules are the same as during normal Series/DataFrame construction.
- Returns
New query compiler with udpated dtypes.
- Return type
- insert(loc, column, value)#
Insert new column.
- Parameters
loc (int) – Insertion position.
column (label) – Label of the new column.
value (One-column BaseQueryCompiler, 1D array or scalar) – Data to fill new column with.
- Returns
QueryCompiler with new column inserted.
- Return type
- invert(*args, **kwargs)#
Execute Map function against passed query compiler.
- is_series_like()#
Check whether this QueryCompiler can represent
modin.pandas.Series
object.- Returns
Return True if QueryCompiler has a single column or row, False otherwise.
- Return type
bool
- isin(values, ignore_indices=False, shape_hint=None)#
Check for each element of self whether it’s contained in passed values.
- Parameters
values (list-like, modin.pandas.Series, modin.pandas.DataFrame or dict) – Values to check elements of self in.
ignore_indices (bool, default: False) – Whether to execute
isin()
only on an intersection of indices.**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
Boolean mask for self of whether an element at the corresponding position is contained in values.
- Return type
- isna(*args, **kwargs)#
Execute Map function against passed query compiler.
- join(right, **kwargs)#
Join columns of another QueryCompiler.
- Parameters
right (BaseQueryCompiler) – QueryCompiler of the right frame to join with.
on (label or list of such) –
how ({"left", "right", "outer", "inner"}) –
lsuffix (str) –
rsuffix (str) –
sort (bool) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
QueryCompiler that contains result of the join.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.join
for more information about parameters and output format.
- kurt(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- last_valid_index()#
Return index label of last non-NaN/NULL value.
- Return type
scalar
- property lazy_execution#
Whether underlying Modin frame should be executed in a lazy mode.
If True, such QueryCompiler will be handled differently at the front-end in order to reduce triggering the computation as much as possible.
- Return type
bool
- le(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- lt(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- mad(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- max(axis, **kwargs)#
Get the maximum value for each column or row.
- Parameters
axis ({{0, 1}}) –
level (None, default: None) – Serves the compatibility purpose. Always has to be None.
numeric_only (bool, optional) –
skipna (bool, default: True) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
One-column QueryCompiler with index labels of the specified axis, where each row contains the maximum value for the corresponding row or column.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.max
for more information about parameters and output format.
- mean(axis, **kwargs)#
Get the mean value for each column or row.
- Parameters
axis ({{0, 1}}) –
level (None, default: None) – Serves the compatibility purpose. Always has to be None.
numeric_only (bool, optional) –
skipna (bool, default: True) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
One-column QueryCompiler with index labels of the specified axis, where each row contains the mean value for the corresponding row or column.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.mean
for more information about parameters and output format.
- median(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- melt(id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None, ignore_index=True)#
Unpivot QueryCompiler data from wide to long format.
- Parameters
id_vars (list of labels, optional) –
value_vars (list of labels, optional) –
var_name (label) –
value_name (label) –
col_level (int or label) –
ignore_index (bool) –
*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler with unpivoted data.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.melt
for more information about parameters and output format.
- memory_usage(**kwargs)#
Return the memory usage of each column in bytes.
- Parameters
index (bool) –
deep (bool) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
One-column QueryCompiler with index labels of self, where each row contains the memory usage for the corresponding column.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.memory_usage
for more information about parameters and output format.
- merge(right, **kwargs)#
Merge QueryCompiler objects using a database-style join.
- Parameters
right (BaseQueryCompiler) – QueryCompiler of the right frame to merge with.
how ({"left", "right", "outer", "inner", "cross"}) –
on (label or list of such) –
left_on (label or list of such) –
right_on (label or list of such) –
left_index (bool) –
right_index (bool) –
sort (bool) –
suffixes (list-like) –
copy (bool) –
indicator (bool or str) –
validate (str) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
QueryCompiler that contains result of the merge.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.merge
for more information about parameters and output format.
- min(axis, **kwargs)#
Get the minimum value for each column or row.
- Parameters
axis ({{0, 1}}) –
level (None, default: None) – Serves the compatibility purpose. Always has to be None.
numeric_only (bool, optional) –
skipna (bool, default: True) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
One-column QueryCompiler with index labels of the specified axis, where each row contains the minimum value for the corresponding row or column.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.min
for more information about parameters and output format.
- mod(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- mode(**kwargs)#
Get the modes for every column or row.
- Parameters
axis ({0, 1}) –
numeric_only (bool) –
dropna (bool) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler with modes calculated along given axis.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.mode
for more information about parameters and output format.
- mul(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- ne(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- negative(*args, **kwargs)#
Execute Map function against passed query compiler.
- nlargest(*args, **kwargs)#
Return the first n rows ordered by columns in descending order.
- Parameters
n (int, default: 5) –
columns (list of labels, optional) – Column labels to order by. (note: this parameter can be omitted only for a single-column query compilers representing Series object, otherwise columns has to be specified).
keep ({"first", "last", "all"}, default: "first") –
- Return type
Notes
Please refer to
modin.pandas.DataFrame.nlargest
for more information about parameters and output format.
- notna(*args, **kwargs)#
Execute Map function against passed query compiler.
- nsmallest(*args, **kwargs)#
Return the first n rows ordered by columns in ascending order.
- Parameters
n (int, default: 5) –
columns (list of labels, optional) – Column labels to order by. (note: this parameter can be omitted only for a single-column query compilers representing Series object, otherwise columns has to be specified).
keep ({"first", "last", "all"}, default: "first") –
- Return type
Notes
Please refer to
modin.pandas.DataFrame.nsmallest
for more information about parameters and output format.
- nunique(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- pivot(index, columns, values)#
Produce pivot table based on column values.
- Parameters
index (label or list of such, pandas.Index, optional) –
columns (label or list of such) –
values (label or list of such, optional) –
- Returns
New QueryCompiler containing pivot table.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.pivot
for more information about parameters and output format.
- pivot_table(index, values, columns, aggfunc, fill_value, margins, dropna, margins_name, observed, sort)#
Create a spreadsheet-style pivot table from underlying data.
- Parameters
index (label, pandas.Grouper, array or list of such) –
values (label, optional) –
columns (column, pandas.Grouper, array or list of such) –
aggfunc (callable(pandas.Series) -> scalar, dict of list of such) –
fill_value (scalar, optional) –
margins (bool) –
dropna (bool) –
margins_name (str) –
observed (bool) –
sort (bool) –
- Return type
Notes
Please refer to
modin.pandas.DataFrame.pivot_table
for more information about parameters and output format.
- pow(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- prod(*args, **kwargs)#
Execute TreeReduce function against passed query compiler.
- prod_min_count(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- quantile_for_list_of_values(**kwargs)#
Get the value at the given quantile for each column or row.
- Parameters
q (list-like) –
axis ({0, 1}) –
numeric_only (bool) –
interpolation ({"linear", "lower", "higher", "midpoint", "nearest"}) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
One-column QueryCompiler with index labels of the specified axis, where each row contains the value at the given quantile for the corresponding row or column.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.quantile
for more information about parameters and output format.
- quantile_for_single_value(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- query(expr, **kwargs)#
Query columns of the QueryCompiler with a boolean expression.
- Parameters
expr (str) –
**kwargs (dict) –
- Returns
New QueryCompiler containing the rows where the boolean expression is satisfied.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.query
for more information about parameters and output format.
- radd(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- rank(**kwargs)#
Compute numerical rank along the specified axis.
By default, equal values are assigned a rank that is the average of the ranks of those values, this behavior can be changed via method parameter.
- Parameters
axis ({0, 1}) –
method ({"average", "min", "max", "first", "dense"}) –
numeric_only (bool) –
na_option ({"keep", "top", "bottom"}) –
ascending (bool) –
pct (bool) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
QueryCompiler of the same shape as self, where each element is the numerical rank of the corresponding value along row or column.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.rank
for more information about parameters and output format.
- reindex(axis, labels, **kwargs)#
Align QueryCompiler data with a new index along specified axis.
- Parameters
axis ({0, 1}) – Axis to align labels along. 0 is for index, 1 is for columns.
labels (list-like) – Index-labels to align with.
method ({None, "backfill"/"bfill", "pad"/"ffill", "nearest"}) – Method to use for filling holes in reindexed frame.
fill_value (scalar) – Value to use for missing values in the resulted frame.
limit (int) –
tolerance (int) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
QueryCompiler with aligned axis.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.reindex
for more information about parameters and output format.
- replace(*args, **kwargs)#
Execute Map function against passed query compiler.
- resample_agg_df(resample_kwargs, func, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and apply passed aggregation function for each group over the specified axis.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.func (str, dict, callable(pandas.Series) -> scalar, or list of such) –
*args (iterable) – Positional arguments to pass to the aggregation function.
**kwargs (dict) – Keyword arguments to pass to the aggregation function.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are a MultiIndex, where first level contains preserved labels of this axis and the second level is the function names.
Each element of QueryCompiler is the result of corresponding function for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.agg
for more information about parameters and output format.
- resample_agg_ser(resample_kwargs, func, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and apply passed aggregation function in a one-column query compiler for each group over the specified axis.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.func (str, dict, callable(pandas.Series) -> scalar, or list of such) –
*args (iterable) – Positional arguments to pass to the aggregation function.
**kwargs (dict) – Keyword arguments to pass to the aggregation function.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are a MultiIndex, where first level contains preserved labels of this axis and the second level is the function names.
Each element of QueryCompiler is the result of corresponding function for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.agg
for more information about parameters and output format.Warning
This method duplicates logic of
resample_agg_df
and will be removed soon.
- resample_app_df(resample_kwargs, func, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and apply passed aggregation function for each group over the specified axis.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.func (str, dict, callable(pandas.Series) -> scalar, or list of such) –
*args (iterable) – Positional arguments to pass to the aggregation function.
**kwargs (dict) – Keyword arguments to pass to the aggregation function.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are a MultiIndex, where first level contains preserved labels of this axis and the second level is the function names.
Each element of QueryCompiler is the result of corresponding function for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.apply
for more information about parameters and output format.Warning
This method duplicates logic of
resample_agg_df
and will be removed soon.
- resample_app_ser(resample_kwargs, func, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and apply passed aggregation function in a one-column query compiler for each group over the specified axis.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.func (str, dict, callable(pandas.Series) -> scalar, or list of such) –
*args (iterable) – Positional arguments to pass to the aggregation function.
**kwargs (dict) – Keyword arguments to pass to the aggregation function.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are a MultiIndex, where first level contains preserved labels of this axis and the second level is the function names.
Each element of QueryCompiler is the result of corresponding function for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.apply
for more information about parameters and output format.Warning
This method duplicates logic of
resample_agg_df
and will be removed soon.
- resample_asfreq(resample_kwargs, fill_value)#
Resample time-series data and get the values at the new frequency.
Group data into intervals by time-series row/column with a specified frequency and get values at the new frequency.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.fill_value (scalar) –
- Returns
New QueryCompiler containing values at the specified frequency.
- Return type
- resample_backfill(resample_kwargs, limit)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and fill missing values in each group independently using back-fill method.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.limit (int) –
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
QueryCompiler contains unsampled data with missing values filled.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.backfill
for more information about parameters and output format.
- resample_bfill(resample_kwargs, limit)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and fill missing values in each group independently using back-fill method.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.limit (int) –
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
QueryCompiler contains unsampled data with missing values filled.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.bfill
for more information about parameters and output format.
- resample_count(resample_kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute number of non-NA values for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the number of non-NA values for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.count
for more information about parameters and output format.
- resample_ffill(resample_kwargs, limit)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and fill missing values in each group independently using forward-fill method.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.limit (int) –
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
QueryCompiler contains unsampled data with missing values filled.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.ffill
for more information about parameters and output format.
- resample_fillna(resample_kwargs, method, limit)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and fill missing values in each group independently using specified method.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.method (str) –
limit (int) –
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
QueryCompiler contains unsampled data with missing values filled.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.fillna
for more information about parameters and output format.
- resample_first(resample_kwargs, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute first element for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the first element for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.first
for more information about parameters and output format.
- resample_get_group(resample_kwargs, name, obj)#
Resample time-series data and get the specified group.
Group data into intervals by time-series row/column with a specified frequency and get the values of the specified group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.name (object) –
obj (modin.pandas.DataFrame, optional) –
- Returns
New QueryCompiler containing the values from the specified group.
- Return type
- resample_interpolate(resample_kwargs, method, axis, limit, inplace, limit_direction, limit_area, downcast, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and fill missing values in each group independently using specified interpolation method.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.method (str) –
axis ({0, 1}) –
limit (int) –
inplace ({False}) – This parameter serves the compatibility purpose. Always has to be False.
limit_direction ({"forward", "backward", "both"}) –
limit_area ({None, "inside", "outside"}) –
downcast (str, optional) –
**kwargs (dict) –
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
QueryCompiler contains unsampled data with missing values filled.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.interpolate
for more information about parameters and output format.
- resample_last(resample_kwargs, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute last element for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the last element for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.last
for more information about parameters and output format.
- resample_max(resample_kwargs, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute maximum value for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the maximum value for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.max
for more information about parameters and output format.
- resample_mean(resample_kwargs, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute mean value for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the mean value for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.mean
for more information about parameters and output format.
- resample_median(resample_kwargs, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute median value for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the median value for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.median
for more information about parameters and output format.
- resample_min(resample_kwargs, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute minimum value for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the minimum value for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.min
for more information about parameters and output format.
- resample_nearest(resample_kwargs, limit)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and fill missing values in each group independently using ‘nearest’ method.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.limit (int) –
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
QueryCompiler contains unsampled data with missing values filled.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.nearest
for more information about parameters and output format.
- resample_nunique(resample_kwargs, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute number of unique values for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the number of unique values for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.nunique
for more information about parameters and output format.
- resample_ohlc_df(resample_kwargs, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute open, high, low and close values for each group over the specified axis.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.*args (iterable) – Positional arguments to pass to the aggregation function.
**kwargs (dict) – Keyword arguments to pass to the aggregation function.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are a MultiIndex, where first level contains preserved labels of this axis and the second level is the labels of columns containing computed values.
Each element of QueryCompiler is the result of corresponding function for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.ohlc
for more information about parameters and output format.
- resample_ohlc_ser(resample_kwargs, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute open, high, low and close values for each group over the specified axis.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.*args (iterable) – Positional arguments to pass to the aggregation function.
**kwargs (dict) – Keyword arguments to pass to the aggregation function.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are a MultiIndex, where first level contains preserved labels of this axis and the second level is the labels of columns containing computed values.
Each element of QueryCompiler is the result of corresponding function for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.ohlc
for more information about parameters and output format.
- resample_pad(resample_kwargs, limit)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and fill missing values in each group independently using ‘pad’ method.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.limit (int) –
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
QueryCompiler contains unsampled data with missing values filled.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.pad
for more information about parameters and output format.
- resample_pipe(resample_kwargs, func, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency, build equivalent
pandas.Resampler
object and apply passed function to it.- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.func (callable(pandas.Resampler) -> object or tuple(callable, str)) –
*args (iterable) – Positional arguments to pass to function.
**kwargs (dict) – Keyword arguments to pass to function.
- Returns
New QueryCompiler containing the result of passed function.
- Return type
Notes
Please refer to
modin.pandas.Resampler.pipe
for more information about parameters and output format.
- resample_prod(resample_kwargs, min_count, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute product for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.min_count (int) –
*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the product for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.prod
for more information about parameters and output format.
- resample_quantile(resample_kwargs, q, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute quantile for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.q (float) –
*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the quantile for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.quantile
for more information about parameters and output format.
- resample_sem(resample_kwargs, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute standard error of the mean for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the standard error of the mean for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.sem
for more information about parameters and output format.
- resample_size(resample_kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute number of elements in a group for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the number of elements in a group for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.size
for more information about parameters and output format.
- resample_std(resample_kwargs, ddof, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute standard deviation for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.ddof (int) –
*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the standard deviation for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.std
for more information about parameters and output format.
- resample_sum(resample_kwargs, min_count, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute sum for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.min_count (int) –
*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the sum for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.sum
for more information about parameters and output format.
- resample_transform(resample_kwargs, arg, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and call passed function on each group. In contrast to
resample_app_df
apply function to the whole group, instead of a single axis.- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.arg (callable(pandas.DataFrame) -> pandas.Series) –
*args (iterable) – Positional arguments to pass to function.
**kwargs (dict) – Keyword arguments to pass to function.
- Returns
New QueryCompiler containing the result of passed function.
- Return type
- resample_var(resample_kwargs, ddof, *args, **kwargs)#
Resample time-series data and apply aggregation on it.
Group data into intervals by time-series row/column with a specified frequency and compute variance for each group.
- Parameters
resample_kwargs (dict) – Resample parameters as expected by
modin.pandas.DataFrame.resample
signature.ddof (int) –
*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the result of resample aggregation built by the following rules:
Labels on the specified axis are the group names (time-stamps)
Labels on the opposite of specified axis are preserved.
Each element of QueryCompiler is the variance for the corresponding group and column/row.
- Return type
Notes
Please refer to
modin.pandas.resample.Resampler.var
for more information about parameters and output format.
- reset_index(**kwargs)#
Reset the index, or a level of it.
- Parameters
drop (bool) – Whether to drop the reset index or insert it at the beginning of the frame.
level (int or label, optional) – Level to remove from index. Removes all levels by default.
col_level (int or label) – If the columns have multiple levels, determines which level the labels are inserted into.
col_fill (label) – If the columns have multiple levels, determines how the other levels are named.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
QueryCompiler with reset index.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.reset_index
for more information about parameters and output format.
- rfloordiv(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- rmod(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- rmul(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- rolling_aggregate(axis, rolling_args, func, *args, **kwargs)#
Create rolling window and apply specified functions for each window over the given axis.
- Parameters
fold_axis ({0, 1}) –
rolling_args (list) – Rolling windows arguments with the same signature as
modin.pandas.DataFrame.rolling
.func (str, dict, callable(pandas.Series) -> scalar, or list of such) –
*args (iterable) –
**kwargs (dict) –
- Returns
New QueryCompiler containing the result of passed functions for each window, built by the following rules:
Labels on the specified axis are preserved.
Labels on the opposite of specified axis are MultiIndex, where first level contains preserved labels of this axis and the second level has the function names.
Each element of QueryCompiler is the result of corresponding function for the corresponding window and column/row.
- Return type
Notes
Please refer to
modin.pandas.Rolling.aggregate
for more information about parameters and output format.
- rolling_apply(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_corr(axis, rolling_args, other, pairwise, *args, **kwargs)#
Create rolling window and compute correlation for each window over the given axis.
- Parameters
fold_axis ({0, 1}) –
rolling_args (list) – Rolling windows arguments with the same signature as
modin.pandas.DataFrame.rolling
.other (modin.pandas.Series, modin.pandas.DataFrame, list-like, optional) –
pairwise (bool, optional) –
*args (iterable) –
**kwargs (dict) –
- Returns
New QueryCompiler containing correlation for each window, built by the following rules:
Output QueryCompiler has the same shape and axes labels as the source.
Each element is the correlation for the corresponding window.
- Return type
Notes
Please refer to
modin.pandas.Rolling.corr
for more information about parameters and output format.
- rolling_count(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_cov(axis, rolling_args, other, pairwise, ddof, **kwargs)#
Create rolling window and compute covariance for each window over the given axis.
- Parameters
fold_axis ({0, 1}) –
rolling_args (list) – Rolling windows arguments with the same signature as
modin.pandas.DataFrame.rolling
.other (modin.pandas.Series, modin.pandas.DataFrame, list-like, optional) –
pairwise (bool, optional) –
ddof (int, default: 1) –
**kwargs (dict) –
- Returns
New QueryCompiler containing covariance for each window, built by the following rules:
Output QueryCompiler has the same shape and axes labels as the source.
Each element is the covariance for the corresponding window.
- Return type
Notes
Please refer to
modin.pandas.Rolling.cov
for more information about parameters and output format.
- rolling_kurt(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_max(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_mean(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_median(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_min(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_quantile(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_rank(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_sem(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_skew(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_std(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_sum(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- rolling_var(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- round(*args, **kwargs)#
Execute Map function against passed query compiler.
- rpow(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- rsub(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- rtruediv(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- searchsorted(**kwargs)#
Find positions in a sorted self where value should be inserted to maintain order.
- Parameters
value (list-like) –
side ({"left", "right"}) –
sorter (list-like, optional) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
One-column QueryCompiler which contains indices to insert.
- Return type
Notes
Please refer to
modin.pandas.Series.searchsorted
for more information about parameters and output format.Warning
This method is supported only by one-column query compilers.
- sem(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- series_update(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- series_view(*args, **kwargs)#
Execute Map function against passed query compiler.
- set_index_from_columns(keys: List[Hashable], drop: bool = True, append: bool = False)#
Create new row labels from a list of columns.
- Parameters
keys (list of hashable) – The list of column names that will become the new index.
drop (bool, default: True) – Whether or not to drop the columns provided in the keys argument.
append (bool, default: True) – Whether or not to add the columns in keys as new levels appended to the existing index.
- Returns
A new QueryCompiler with updated index.
- Return type
- setitem(axis, key, value)#
Set the row/column defined by key to the value provided.
- Parameters
axis ({0, 1}) – Axis to set value along. 0 means set row, 1 means set column.
key (label) – Row/column label to set value in.
value (BaseQueryCompiler, list-like or scalar) – Define new row/column value.
- Returns
New QueryCompiler with updated key value.
- Return type
- setitem_bool(row_loc, col_loc, item)#
Set an item to the given location based on row_loc and col_loc.
- Parameters
row_loc (BaseQueryCompiler) – Query Compiler holding a Series of booleans.
col_loc (label) – Column label in self.
item (scalar) – An item to be set.
- Returns
New QueryCompiler with the inserted item.
- Return type
Notes
Currently, this method is only used to set a scalar to the given location.
- skew(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- sort_columns_by_row_values(rows, ascending=True, **kwargs)#
Reorder the columns based on the lexicographic order of the given rows.
- Parameters
rows (label or list of labels) – The row or rows to sort by.
ascending (bool, default: True) – Sort in ascending order (True) or descending order (False).
kind ({"quicksort", "mergesort", "heapsort"}) –
na_position ({"first", "last"}) –
ignore_index (bool) –
key (callable(pandas.Index) -> pandas.Index, optional) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler that contains result of the sort.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.sort_values
for more information about parameters and output format.
- sort_index(**kwargs)#
Sort data by index or column labels.
- Parameters
axis ({0, 1}) –
level (int, label or list of such) –
ascending (bool) –
inplace (bool) –
kind ({"quicksort", "mergesort", "heapsort"}) –
na_position ({"first", "last"}) –
sort_remaining (bool) –
ignore_index (bool) –
key (callable(pandas.Index) -> pandas.Index, optional) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler containing the data sorted by columns or indices.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.sort_index
for more information about parameters and output format.
- sort_rows_by_column_values(columns, ascending=True, **kwargs)#
Reorder the rows based on the lexicographic order of the given columns.
- Parameters
columns (label or list of labels) – The column or columns to sort by.
ascending (bool, default: True) – Sort in ascending order (True) or descending order (False).
kind ({"quicksort", "mergesort", "heapsort"}) –
na_position ({"first", "last"}) –
ignore_index (bool) –
key (callable(pandas.Index) -> pandas.Index, optional) –
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler that contains result of the sort.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.sort_values
for more information about parameters and output format.
- stack(level, dropna)#
Stack the prescribed level(s) from columns to index.
- Parameters
level (int or label) –
dropna (bool) –
- Return type
Notes
Please refer to
modin.pandas.DataFrame.stack
for more information about parameters and output format.
- std(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- str___getitem__(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_capitalize(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_center(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_contains(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_count(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_endswith(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_extract(pat, flags, expand)#
Apply “extract” function to each string value in QueryCompiler.
- Parameters
pat (str) –
flags (int, default: 0) –
expand (bool, default: True) –
- Returns
New QueryCompiler containing the result of execution of the “extract” function against each string element.
- Return type
Notes
Please refer to
modin.pandas.Series.str.extract
for more information about parameters and output format.Warning
This method is supported only by one-column query compilers.
- str_find(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_findall(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_get(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_index(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_isalnum(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_isalpha(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_isdecimal(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_isdigit(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_islower(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_isnumeric(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_isspace(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_istitle(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_isupper(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_join(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_len(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_ljust(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_lower(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_lstrip(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_match(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_normalize(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_pad(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_partition(sep=' ', expand=True)#
Apply “partition” function to each string value in QueryCompiler.
- Parameters
sep (str, default: ' ') –
expand (bool, default: True) –
- Returns
New QueryCompiler containing the result of execution of the “partition” function against each string element.
- Return type
Notes
Please refer to
modin.pandas.Series.str.partition
for more information about parameters and output format.Warning
This method is supported only by one-column query compilers.
- str_repeat(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_replace(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_rfind(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_rindex(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_rjust(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_rpartition(sep=' ', expand=True)#
Apply “rpartition” function to each string value in QueryCompiler.
- Parameters
sep (str, default: ' ') –
expand (bool, default: True) –
- Returns
New QueryCompiler containing the result of execution of the “rpartition” function against each string element.
- Return type
Notes
Please refer to
modin.pandas.Series.str.rpartition
for more information about parameters and output format.Warning
This method is supported only by one-column query compilers.
- str_rsplit(pat=None, n=-1, expand=False)#
Apply “rsplit” function to each string value in QueryCompiler.
- Parameters
pat (str, optional) –
n (int, default: -1) –
expand (bool, default: False) –
- Returns
New QueryCompiler containing the result of execution of the “rsplit” function against each string element.
- Return type
Notes
Please refer to
modin.pandas.Series.str.rsplit
for more information about parameters and output format.Warning
This method is supported only by one-column query compilers.
- str_rstrip(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_slice(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_slice_replace(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_split(pat=None, n=-1, expand=False, regex=None)#
Apply “split” function to each string value in QueryCompiler.
- Parameters
pat (str, optional) –
n (int, default: -1) –
expand (bool, default: False) –
regex (bool, default: None) –
- Returns
New QueryCompiler containing the result of execution of the “split” function against each string element.
- Return type
Notes
Please refer to
modin.pandas.Series.str.split
for more information about parameters and output format.Warning
This method is supported only by one-column query compilers.
- str_startswith(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_strip(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_swapcase(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_title(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_translate(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_upper(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_wrap(*args, **kwargs)#
Execute Map function against passed query compiler.
- str_zfill(*args, **kwargs)#
Execute Map function against passed query compiler.
- sub(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- sum(*args, **kwargs)#
Execute TreeReduce function against passed query compiler.
- sum_min_count(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- take_2d_positional(index=None, columns=None)#
Index QueryCompiler with passed keys.
- Parameters
index (list-like of ints, optional) – Positional indices of rows to grab.
columns (list-like of ints, optional) – Positional indices of columns to grab.
- Returns
New masked QueryCompiler.
- Return type
- to_dataframe(nan_as_null: bool = False, allow_copy: bool = True)#
Get a DataFrame exchange protocol object representing data of the Modin DataFrame.
See more about the protocol in https://data-apis.org/dataframe-protocol/latest/index.html.
- Parameters
nan_as_null (bool, default: False) – A keyword intended for the consumer to tell the producer to overwrite null values in the data with
NaN
(orNaT
). This currently has no effect; once support for nullable extension dtypes is added, this value should be propagated to columns.allow_copy (bool, default: True) – A keyword that defines whether or not the library is allowed to make a copy of the data. For example, copying data would be necessary if a library supports strided buffers, given that this protocol specifies contiguous buffers. Currently, if the flag is set to
False
and a copy is needed, aRuntimeError
will be raised.
- Returns
A dataframe object following the DataFrame protocol specification.
- Return type
ProtocolDataframe
- to_datetime(*args, **kwargs)#
Convert columns of the QueryCompiler to the datetime dtype.
- Parameters
*args (iterable) –
**kwargs (dict) –
- Returns
QueryCompiler with all columns converted to datetime dtype.
- Return type
Notes
Please refer to
modin.pandas.to_datetime
for more information about parameters and output format.
- to_numeric(*args, **kwargs)#
Execute Map function against passed query compiler.
- to_numpy(**kwargs)#
Convert underlying query compilers data to NumPy array.
- Parameters
dtype (dtype) – The dtype of the resulted array.
copy (bool) – Whether to ensure that the returned value is not a view on another array.
na_value (object) – The value to replace missing values with.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
The QueryCompiler converted to NumPy array.
- Return type
np.ndarray
- to_pandas()#
Convert underlying query compilers data to
pandas.DataFrame
.- Returns
The QueryCompiler converted to pandas.
- Return type
pandas.DataFrame
- to_timedelta(*args, **kwargs)#
Execute Map function against passed query compiler.
- transpose(*args, **kwargs)#
Transpose this QueryCompiler.
- Parameters
copy (bool) – Whether to copy the data after transposing.
*args (iterable) – Serves the compatibility purpose. Does not affect the result.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
Transposed new QueryCompiler.
- Return type
- truediv(other, broadcast=False, *args, dtypes=None, **kwargs)#
Apply binary func to passed operands.
- Parameters
query_compiler (QueryCompiler) – Left operand of func.
other (QueryCompiler, list-like object or scalar) – Right operand of func.
broadcast (bool, default: False) – If other is a one-column query compiler, indicates whether it is a Series or not. Frames and Series have to be processed differently, however we can’t distinguish them at the query compiler level, so this parameter is a hint that passed from a high level API.
*args (args,) – Arguments that will be passed to func.
dtypes ("copy", scalar dtype or None, default: None) – Dtypes of the result. “copy” to keep old dtypes and None to compute them on demand.
**kwargs (kwargs,) – Arguments that will be passed to func.
- Returns
Result of binary function.
- Return type
QueryCompiler
- unique()#
Get unique values of self.
- Parameters
**kwargs (dict) – Serves compatibility purpose. Does not affect the result.
- Returns
New QueryCompiler with unique values.
- Return type
Notes
Please refer to
modin.pandas.Series.unique
for more information about parameters and output format.Warning
This method is supported only by one-column query compilers.
- unstack(level, fill_value)#
Pivot a level of the (necessarily hierarchical) index labels.
- Parameters
level (int or label) –
fill_value (scalar or dict) –
- Return type
Notes
Please refer to
modin.pandas.DataFrame.unstack
for more information about parameters and output format.
- var(*args, **kwargs)#
Execute Reduce function against passed query compiler.
- where(cond, other, **kwargs)#
Update values of self using values from other at positions where cond is False.
- Parameters
cond (BaseQueryCompiler) – Boolean mask. True - keep the self value, False - replace by other value.
other (BaseQueryCompiler or pandas.Series) – Object to grab replacement values from.
axis ({0, 1}) – Axis to align frames along if axes of self, cond and other are not equal. 0 is for index, when 1 is for columns.
level (int or label, optional) – Level of MultiIndex to align frames along if axes of self, cond and other are not equal. Currently level parameter is not implemented, so only None value is acceptable.
**kwargs (dict) – Serves the compatibility purpose. Does not affect the result.
- Returns
QueryCompiler with updated data.
- Return type
Notes
Please refer to
modin.pandas.DataFrame.where
for more information about parameters and output format.
- window_mean(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- window_std(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- window_sum(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- window_var(fold_axis=None, *args, **kwargs)#
Execute Fold function against passed query compiler.
- Parameters
query_compiler (BaseQueryCompiler) – The query compiler to execute the function on.
fold_axis (int, optional) – 0 or None means apply across full column partitions. 1 means apply across full row partitions.
*args (iterable) – Additional arguments passed to fold_function.
**kwargs (dict) – Additional keyword arguments passed to fold_function.
- Returns
A new query compiler representing the result of executing the function.
- Return type
- write_items(row_numeric_index, col_numeric_index, broadcasted_items)#
Update QueryCompiler elements at the specified positions by passed values.
In contrast to
setitem
this method allows to do 2D assignments.- Parameters
row_numeric_index (list of ints) – Row positions to write value.
col_numeric_index (list of ints) – Column positions to write value.
broadcasted_items (2D-array) – Values to write. Have to be same size as defined by row_numeric_index and col_numeric_index.
- Returns
New QueryCompiler with updated values.
- Return type